ANALISA PENGENDALIAN PERSEDIAAN PRODUK SEPATU MENGGUNAKAN METODE FORCASTING, EOQ dan MONTE CARLO PADA PT KIRANA ABADI SENTOSA
Main Article Content
Abstract
This study aims to determine which method is appropriate for predicting shoe demand at PT Kirana Abadi Sentosa for the January-December 2018 period based on the smallest MAD and MSE values and to know the application of Monte Carlo simulations to calculate inventory at PT Kirana Abadi Sentosa. In this research the Time Series forecasting method (Naive Method, Moving Averages, Exponential Smoothing and Trend Projection) will be compared, then Mean Absolute Deviation (MAD) and Mean Square Error (MSE) will be used. After selecting the smallest MAD and MSE and determine the forecast results then entered into the EOQ calculation and compared using Monte Carlo simulations. The research methodology used is quantitative methods. From the analysis of this research Na¯ve Method is the method that has the smallest value with a MAD value of 9.277 and MSE 211.104. The results of Time Series forecasting and EOQ calculations and the results of the Monte Carlo simulation obtained calculations that are suitable for the company PT Kirana Abadi Sentosa are Monte Carlo simulations because it can produce a total inventory cost much smaller at Rp40,791,144,304.
Keywords: Forecasting, Quantitative, Inventory, EOQ, Monte Carlo Simulation
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Assauri, S. (2016). Manajemen Produksi dan Operasi. Jakarta: LPFE Universitas Indonesia.
Baktiar, C., Wibowo, A., & Adipranata, R. (2015). Pembuatan Sistem Peramalan Penjualan Dengan Metode Weighted Moving Average dan Double Exponential Smoothing Pada UD Y. Jurnal Infra, 3(1), pp-222.
Gani, I. M., & Saputri, M. E. (2015). Analisis Peramalan Dan Pengendalian Persediaan Bahan Baku dengan Metode EOQ pada Optimalisasi Kayu di Perusahaan Purezento. eProceedings of Management, 2(2).
Hanief, S., & Purwanto, A. (2017). Peramalan Dengan Metode Exponential Smoothing Dan Analisis Sistem Untuk Penentuan Stok Atk (Kertas A4). Jurnal Teknologi Informasi dan Komputer, 3(1).
Heizer, J., & Render, B. (2014). Sustainability and supply chain management. New Jersey: Pearson
Hutahaean, H. D. (2018). Analisa Simulasi Monte Carlo Untuk Memprediksi Tingkat Kehadiran mahasiswa Dalam Perkuliahan (Studi Kasus: STMIK Pelita Nusantara). Journal Of Informatic Pelita Nusantara, 3(1).
Nasution, K. N. (2016). Prediksi Penjualan Barang Pada Koperasi PT. Perkebunan Silindak Dengan Menggunakan Metode Monte Carlo. JURIKOM (Jurnal Riset Komputer), 3(6).
Ristono, A. (2009). Manajemen Persediaan. Yogyakarta: Graha Ilmu.
Sarjono, H., & Abbas, B. S. (2017). Forecasting Aplikasi Penelitian Bisnis QM For Windows Vs Minitab Vs Manual. (D. S. Hamali, Ed.) (Pertama). Jakarta: Mitra Wancana Media.
Sugiyono (2015). Metode Kuantitatif Kualitatif dan R&D, cetakan ke-22. Bandung: Penerbit Alfabeta.
Veza, O. (2016). Simulasi Pengendalian Persedian Gas Menggunakan Metode Monte Carlo Dan Pola Lcm (Studi Kasus Di PT PKM Group Cabang Batam). Jurnal Teknik Ibnu Sina JT-IBSI, 1(01).
Yuliana, C., & Sudjana, N. (2016). Penerapan Model Eoq (Economic Order Quantity) Dalam Rangka Meminimumkan Biaya Persediaan Bahan Baku Jurnal Admin strasi Bisnis, 36(1)