Menjelaskan Adopsi Aplikasi Shopee Menggunakan Technology Acceptance Model Davis 1985

Main Article Content

Eric Christopher


The use of online shopping applications has spread widely at present. However, the reasons why consumers use these applications are not fully understood. Therefore, by adapting the Technology Acceptance Model, this study aims to find the factors that encourage online shoppers to use the Shopee application. The three exogenous variables are perceived complexity, self-efficacy, and internet connection. The sample data is 150 respondents, taken by judgment sampling and processed using structural equation modelling with WarpPLS. This study found that complexity does not have a direct effect on perceived usefulness but has a negative influence on perceived ease of use. As hypothesised, self-efficacy determines perceived usefulness and perceived ease of use positively and significantly. The impact of internet connection on perceived usability and perceived ease of use are also in the same pattern. The same result was also performed by perceived ease of use on perceived usefulness and attitudes toward the use and perceived usefulness on attitudes toward use. Future research can add anticipated emotions as an exogenous variable.


Download data is not yet available.

Article Details

How to Cite
Christopher, E. (2023). Menjelaskan Adopsi Aplikasi Shopee Menggunakan Technology Acceptance Model Davis 1985. Jurnal Manajemen, 12(2), 1–23.
Artikel Riset


Ajzen, I. (2005). Attitude, Personality, Behavior. 2nd Edition. New York, NY: Open University Press.

Bandura, A. (1995). Self-efficacy in Changing Societies. New York, NY: Cambridge University

Cooper, D., & Pamela S. Schindler, P.S. (2018). Metode Penelitian Bisnis [Terjemahan]. Edisi 12. Jakarta, INA: Salemba Empat.

Davis, F. D. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Massachusetts Institute of Technology.

Ekatyas Eka, L., & Dergibson, S. (2021). Adapting Technology Adoption Model to Detect Intention to Use’s Online Ticketing Application. Jurnal Ekonomi Perusahaan, 28(1), 62–73.

Handayani, Wahyu P. P., and Mugi Harsono. (2016). Aplikasi Technology Acceptance Model (TAM) pada Komputerisasi Kegiatan Pertanahan. Jurnal Economia, 12 (1), 13-22. Https://

Haryono, S. (2017). Metode SEM untuk Penelitian Manajemen dengan AMOS LISREL PLS. Jakarta: Luxima Metro Media

Kurniawati, H. A., Arif, A., & Winarno, W. A. (2017). Analisis Minat Penggunaan Mobile Banking Dengan Pendekatan Technology Acceptance Model (TAM) Yang Telah Dimodifikasi. E-Journal Ekonomi Bisnis Dan Akuntansi, 4(1), 24.

Laundon, K.C., @ Laundon, J. P. (2018). Management Information Systems: Managing the Digital Firm, 8th Edition. Prentice-Hall.

Rogers, E. M. (1983). Diffusion of Innovations. New York, NY: Free Press

Perugini, M., & Bagozzi, R. P. (2001). The Role Of Desires and Anticipated Emotions in Goal-directed Behaviours: Broadening and Deepening the Theory Of Planned Behaviour. British Journal of Social Psychology, 40(1), 79–98.

Santika, I. W., & Yadna, I. P. (2017). Analisis Technology Acceptance Model Terhadap penggunaan E-Commerce Pada UKM Kerajinan di Gianyar. Prosiding Seminar Nasional AIMI, 2015, 27–28.

Simamora, B. (2021). Significant Others’ Anticipated Emotions Increase Students’ Intention to Avoid Smoking. Humaniora, 12(2), 127-139.

Simamora, B. (2021). Anticipated Emotions of Significant Others as Social Influence: Can They Predict Students’ Smoking Abstinence Continuance Intention?. Jurnal Ekonomi Perusahaan, 28(1), 49–61. Https://

Solomon, M. R. (2018). Consumer Behavior: Buying, Having, and Being (12th ed.). Pearson.

Sugiyono (2019), Metode Penelitian Kuantitatif Kualitatif dan R&D, Edisi 2, Bandung: Alfabeta.

Wijanto, S. (2008). Structural Equation Modeling dengan Lisrel 8.8. Yogyakarta: Graha Ilmu.

Zuhdi, Z., Suharjo, B., & Sumarno, H. (2016). Perbandingan Pendugaan Parameter Koefisien Struktural Model Melalui Sem Dan Pls-Sem. Journal of Mathematics and Its Applications, 15(2), 11–22.